Journal list menu
A trait-based carbon export model for mesopelagic fishes in the Gulf of Mexico with consideration of asynchronous vertical migration, flux boundaries, and feeding guilds
Correction(s) for this article
-
Corrigendum: A trait-based carbon export model for mesopelagic fishes in the Gulf of Mexico with consideration of asynchronous vertical migration, flux boundaries, and feeding guilds
- Volume 67Issue 9Limnology and Oceanography
- pages: 2117-2117
- First Published online: July 4, 2022
Corresponding Author
Matthew S. Woodstock
Department of Biological Sciences, Oceans and Coastal Division, Institute of Environment, Florida International University, North Miami, Florida, USA
Correspondence: [email protected]
Search for more papers by this authorTracey T. Sutton
Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, Florida, USA
Search for more papers by this authorYuying Zhang
Department of Biological Sciences, Oceans and Coastal Division, Institute of Environment, Florida International University, North Miami, Florida, USA
Search for more papers by this authorCorresponding Author
Matthew S. Woodstock
Department of Biological Sciences, Oceans and Coastal Division, Institute of Environment, Florida International University, North Miami, Florida, USA
Correspondence: [email protected]
Search for more papers by this authorTracey T. Sutton
Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, Florida, USA
Search for more papers by this authorYuying Zhang
Department of Biological Sciences, Oceans and Coastal Division, Institute of Environment, Florida International University, North Miami, Florida, USA
Search for more papers by this authorAuthor Contribution Statement: M.W. and Y.Z. conceptualized and built the model. T.S. and M.W. collected data. M.W. wrote the initial manuscript and all authors contributed significantly to revisions.
Abstract
Fish-mediated carbon export provides a significant proportion of the biological carbon pump in oligotrophic regions. Bioenergetic models estimate this carbon transport, but many lack species-specific traits and no carbon export model has been developed in the mesopelagic Gulf of Mexico. Intensive mesopelagic sampling efforts in the northern and eastern Gulf of Mexico have provided high-resolution information regarding community composition, species' vertical migratory characteristics, diel depth occupancies, and diets. A stochastic, individual-based model was developed for deep-pelagic fishes in the northern Gulf of Mexico to estimate bioenergetic rates and carbon export fluxes. Fishes that ate gelatinous zooplankton consumed more mass per body weight per day than predators of cephalopods and fishes, ostensibly to increase the throughput of prey with less carbon (gelata) or more refractory materials (Crustacea). A dynamic energy budget submodel indicated that during 81% of occurrences, asynchronous vertically migrating fishes rested for 1 d before migrating again, but migrations on successive days were possible. In terms of carbon export, myctophids and stomiids contributed greater than 53% and 12% of the active carbon flux for the entire assemblage in all scenarios. The assemblage-wide carbon export rate driven by vertically migrating fishes was 0.14–0.72 mg C m−2 d−1, 61% of the ingested carbon by the assemblage. Incorporating species-specific traits and individual variability in bioenergetic models allows for more complex research questions (e.g., the effect of feeding guilds and asynchronous migration on carbon export) compared to the carbon export models that otherwise assume all fishes within a functional group are equivalent.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: 10.7266/N7VX0DK2; 10.7266/N70P0X3T; 10.7266/N7XP7385; 10.7266/N7902234; 10.7266/n7-ac8e-0240).
Supporting Information
Filename | Description |
---|---|
lno12093-sup-0001-supinfo.docxWord 2007 document , 600.3 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Angel, M. V. 1993. Biodiversity of the pelagic ocean. Conserv. Biol. 7: 760–772. doi:10.1046/j.1523-1739.1993.740760.x
- Ariza, A., J. C. Garijo, J. M. Landeira, F. Bordes, and S. Hernández-León. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134: 330–342. doi:10.1016/j.pocean.2015.03.003
- Bianchi, D., and K. A. S. Mislan. 2016. Global patterns of diel vertical migration times and velocities from acoustic data. Limnol. Oceanogr. 61: 353–364. doi:10.1002/lno.10219
- Bishop, R. E., and J. J. Torres. 2001. Leptocephalus energetics: Assembly of the energetics equation. Mar. Biol. 138: 1093–1098. doi:10.1007/s002270100541
- Bos, R. P., T. T. Sutton, and T. M. Frank. 2021. State of satiation partially regulates the dynamics of vertical migration. Front. Mar. Sci. 8: 1–11. doi:10.3389/fmars.2021.607228
- Boswell, K. M., M. D'Elia, M. W. Johnston, J. A. Mohan, J. D. Warren, R. J. D. Wells, and T. T. Sutton. 2020. Oceanographic structure and light levels drive patterns of sound scattering layers in a low-latitude oceanic system. Front. Mar. Sci. 7: 51. doi:10.3389/fmars.2020.00051
- Brett, J., and T. Groves. 1979. Physiological energetics: Volume VIII, bioenergetics and growth, p. 280–352. In W. S. Hoar, D. J. Randall, and J. R. Brett [eds.], Fish physiology. Academic Press.
- Buesseler, K. O., P. W. Boyd, E. E. Black, and D. A. Siegel. 2020. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl. Acad. Sci. 117: 9679–9687. doi:10.1073/pnas.1918114117
- Childress, J. J., and G. N. Somero. 1979. Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52: 273–283. doi:10.1007/BF00398141
- Choy, C. A., S. H. D. Haddock, and B. H. Robison. 2017. Deep pelagic food web structure as revealed by in situ feeding observations. Proc. R. Soc. B 284: 20172116. doi:10.1098/rspb.2017.2116
- Christiansen, S., T. A. Klevjer, A. Røstad, D. L. Aksnes, and S. Kaartvedt. 2021. Flexible behaviour in a mesopelagic fish (Maurolicus muelleri). ICES J. Mar. Sci. 78: 1623–1635. doi:10.1093/icesjms/fsab075
- Clarke, T. M. 1978. Dial feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fish. Bull. 76: 495–513.
- Cook, A. B., and others. 2020. A multidisciplinary approach to investigate deep-pelagic ecosystem dynamics in the Gulf of Mexico following Deepwater Horizon. Front. Mar. Sci. 7: 1–14. doi:10.3389/fmars.2020.548880
- Davison, P. C. C., D. M. M. Checkley, J. A. A. Koslow, and J. Barlow. 2013. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116: 14–30. doi:10.1016/J.POCEAN.2013.05.013
- Ducklow, H. W., D. K. Steinberg, and K. O. Buesseler. 2001. Upper ocean carbon export and the biological pump. Oceanography 14: 50–58.
10.5670/oceanog.2001.06 Google Scholar
- Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.
- Feagans-Bartow, J. N., and T. T. Sutton. 2014. Ecology of the oceanic rim: Pelagic eels as key ecosystem components. Mar. Ecol. Prog. Ser. 502: 257–266. doi:10.3354/meps10707
- Gartner, J. V., Jr., T. L. Hopkins, R. C. Baird, and D. M. Milliken. 1987. The lanternfishes (Pices: Myctophidae) of the Eastern Gulf of Mexico. Fish. Bull. 35: 81–98.
- Gibbs, A., and G. N. Somero. 1989. Pressure adaptation of Na+/K+-ATPase in gills of marine teleosts. J. Exp. Biol. 143: 475–492. doi:10.1242/jeb.143.1.475
- Gillooly, J., and others. 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251. doi:10.1126/science.1061967
- Haddock, S. H. D. 2004. A golden age of gelata: Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530–531: 549–556. doi:10.1007/s10750-004-2653-9
- Haedrich, R. L. 1996. Deep-water fishes: Evolution and adaptation in the earth's largest living spaces. J. Fish Biol. 49: 40–53. doi:10.1111/j.1095-8649.1996.tb06066.x
- Hernández-León, S., S. Calles, and M. Luz Fernández De Puelles. 2019a. The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration. Prog. Oceanogr. 178: 102163. doi:10.1016/j.pocean.2019.102163
- Hernández-León, S., M. P. Olivar, M. L. Fernández de Puelles, A. Bode, A. Castellón, C. López-Pérez, V. M. Tuset, and J. I. González-Gordillo. 2019b. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6: 1–20. doi:10.3389/fmars.2019.00535
- Hidaka, K., K. Kawaguchi, M. Murakami, and M. Takahashi. 2001. Downward transport of organic carbon by diel migratory micronekton in the western equatorial pacific: Its quantitative and qualitative importance. Deep. Res. Part I Oceanogr. Res. Pap. 48: 1923–1939. doi:10.1016/S0967-0637(01)00003-6
- Hopkins, T. L., and J. V. Gartner. 1992. Resource-partitioning and predation impact of a low-latitude myctophid community. Mar. Biol. 114: 185–197. doi:10.1007/BF00349518
- Hopkins, T. L., T. T. Sutton, and T. M. Lancraft. 1996. The trophic structure and predation impact of a low latitude midwater fish assemblage. Prog. Oceanogr. 38: 205–239.
- Hudson, J. M., D. K. Steinberg, T. T. Sutton, J. E. Graves, and R. J. Latour. 2014. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep. Res. Part I Oceanogr. Res. Pap. 93: 104–116. doi:10.1016/j.dsr.2014.07.002
- Ikeda, T. 2016. Routine metabolic rates of pelagic marine fishes and cephalopods as a function of body mass, habitat temperature and habitat depth. J. Exp. Mar. Bio. Ecol. 480: 74–86. doi:10.1016/j.jembe.2016.03.012
- Irigoien, X., and others. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5: 3271. doi:10.1038/ncomms4271
- Johnston, M. W., and A. M. Bernard. 2017. A bank divided: Quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico. Mar. Biol. 164: 1–15. doi:10.1007/s00227-016-3038-0
- Johnston, M. W., R. J. Milligan, C. G. Easson, S. deRada, D. C. English, B. Penta, and T. T. Sutton. 2019. An empirically validated method for characterizing pelagic habitats in the Gulf of Mexico using ocean model data. Limnol. Oceanogr. Methods 17: 362–375. doi:10.1002/lom3.10319
- Judkins, D. C. 2014. Geographical distribution of pelagic decapod shrimp in the Atlantic Ocean. Zootaxa 3895: 301–345. doi:10.11646/zootaxa.3895.3.1
- Jusup, M., T. Klanjscek, H. Matsuda, and S. A. L. M. Kooijman. 2011. A full lifecycle bioenergetic model for bluefin tuna. PLoS One 6: e21903. doi:10.1371/journal.pone.0021903
- Kooijman, S. A. L. M. 2010. Dynamic energy budget theory for metabolic organisation: Summary of concepts of the, 3rd ed. Cambridge Univ. Press.
- Koslow, J. A., R. J. Kloser, and A. Williams. 1997. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Mar. Ecol. Prog. Ser. 146: 21–35. doi:10.3354/meps146021
- Lancraft, T., T. L. Hopkins, and J. J. Torres. 1988. Aspects of the ecology of the mesopelagic fish Gonostoma elongatum (Gonostomatidae, Stomnformes) in the eastern Gulf of Mexico. Mar. Ecol. Prog. Ser. 49: 27–40. doi:10.3354/meps049027
- Lomas, M. W., D. K. Steinberg, T. Dickey, C. Carlson, N. Nelson, R. Condon, and N. Bates. 2010. Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation. Biogeosciences 7: 57–70. doi:10.5194/bg-7-57-2010
- Pakhomov, E. A., R. Perissinotto, and C. D. McQuaid. 1996. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar. Ecol. Prog. Ser. 134: 1–14. doi:10.3354/meps134001
- Pearcy, W. G., H. V. Lorz, and W. Peterson. 1979. Comparison of the feeding habits of migratory and non-migratory Stenobrachius leucopsarus (Myctophidae). Mar. Biol. 51: 1–8.
- Pearre, S. 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: History, evidence and consequences. Biol. Rev. Camb. Philos. Soc. 78: 1–79. doi:10.1017/S146479310200595X
- Proud, R., N. O. Handegard, R. J. Kloser, M. J. Cox, A. S. Brierley, and D. Demer. 2019. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76: 718–733. doi:10.1093/icesjms/fsy037
- Pusch, C., P. A. Hulley, and K. H. Kock. 2004. Community structure and feeding ecology of mesopelagic fishes in the slope waters of King George Island (South Shetland Islands, Antarctica). Deep. Res. Part I Oceanogr. Res. Pap. 51: 1685–1708. doi:10.1016/j.dsr.2004.06.008
- Radchenko, V. I. 2007. Mesopelagic fish community supplies “Biological Pump”. Raffles Bull. Zool. 14: 265–271. doi:10.1038/274362a0
- Robison, B. H. 2004. Deep pelagic biology. J. Exp. Mar. Bio. Ecol. 300: 253–272. doi:10.1016/j.jembe.2004.01.012
- Robison, B. H., and T. G. Bailey. 1981. Sinking rates and dissolution of midwater fish fecal matter. Mar. Biol. 65: 135–142. doi:10.1007/BF00397077
- Saba, G. K., and others. 2021. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66: 1–26. doi:10.1002/lno.11709
- Sauzède, R., J. E. Johnson, H. Claustre, G. Camps-Valls, and A. B. Ruescas. 2020. Estimation of oceanic particulate organic carbon with machine learning. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. 2: 949–956. doi:10.5194/isprs-annals-V-2-2020-949-2020
10.5194/isprs-annals-V-2-2020-949-2020 Google Scholar
- Stickney, D. G., and J. J. Torres. 1989. Proximate composition and energy content of mesopelagic fishes from the eastern Gulf of Mexico. Mar. Biol. 103: 13–24. doi:10.1007/BF00391060
- Sutton, T. T. 2013. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83: 1508–1527. doi:10.1111/jfb.12263
- Sutton, T. T., T. Frank, H. Judkins, and I. C. Romero. 2020. As gulf oil extraction goes deeper, who is at risk? Community structure, distribution, and connectivity of the deep-pelagic fauna. In S. Murawski, C. H. Ainsworth, S. Gilbert, D. J. Hollander, C. B. Paris, M. Schlüter, and D. L. Wetzel [eds.], Scenarios and responses to future deep oil spills. Springer.
10.1007/978-3-030-12963-7_24 Google Scholar
- Sutton, T. T., and T. Hopkins. 1996. Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: Strategies, selectivity and impact of a top mesopelagic predator group. Mar. Biol. 127: 179–192. doi:10.1007/BF00942102
- Tanaka, H., C. Sassa, S. Ohshimo, and I. Aoki. 2013. Feeding ecology of two lanternfishes Diaphus garmani and Diaphus chrysorhynchus. J. Fish Biol. 82: 1011–1031. doi:10.1111/jfb.12051
- Urmy, S. S., and K. J. Benoit-Bird. 2021. Fear dynamically structures the ocean's pelagic zone. Curr. Biol. 31: 1–7. doi:10.1016/j.cub.2021.09.003
- Wilson, R. W., F. J. Millero, J. R. Taylor, P. J. Walsh, V. Christensen, S. Jennings, and M. Grosell. 2009. Contribution of fish to the marine inorganic carbon cycle. Science 323: 359–362. doi:10.1016/j.pepi.2008.05.007
- Winberg, G. G. 1956. Rate of metabolism and food requirements of fish. Fish. Res. Board Canada 194: 1–253.
- Woodstock, M. S., T. T. Sutton, T. Frank, and Y. Zhang. 2021. An early warning sign: Trophic structure changes in the oceanic Gulf of Mexico from 2011–2018. Ecol. Model. 445: 109509. doi:10.1016/j.ecolmodel.2021.109509
- Yoon, W., S. Kim, and K. Han. 2001. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol. 139: 923–928. doi:10.1007/s002270100630