Journal list menu
High variability in organic carbon sources and microbial activities in the hadopelagic waters
Corresponding Author
Xinxin Li
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Correspondence: [email protected]; [email protected]
Search for more papers by this authorXin Zhao
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorCorresponding Author
Hongyue Dang
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Correspondence: [email protected]; [email protected]
Search for more papers by this authorChuanlun Zhang
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorIgor Fernández-Urruzola
Millennium Institute of Oceanography, University of Concepción, Concepción, Chile
Search for more papers by this authorZhiqiang Liu
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorFrank Wenzhöfer
HGF-MPG Group for Deep Sea Ecology & and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Max Planck Institute for Marine Microbiology, Bremen, Germany
Department of Biology, University of Southern Denmark, Odense M, Denmark
Search for more papers by this authorRonnie N. Glud
Department of Biology, University of Southern Denmark, Odense M, Denmark
Tokyo University of Marine Science and Technology, Tokyo, Japan
Danish Institute for Advanced Study-DIAS, University of Southern Denmark, Odense, Denmark
Search for more papers by this authorCorresponding Author
Xinxin Li
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Correspondence: [email protected]; [email protected]
Search for more papers by this authorXin Zhao
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorCorresponding Author
Hongyue Dang
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Correspondence: [email protected]; [email protected]
Search for more papers by this authorChuanlun Zhang
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorIgor Fernández-Urruzola
Millennium Institute of Oceanography, University of Concepción, Concepción, Chile
Search for more papers by this authorZhiqiang Liu
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorFrank Wenzhöfer
HGF-MPG Group for Deep Sea Ecology & and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Max Planck Institute for Marine Microbiology, Bremen, Germany
Department of Biology, University of Southern Denmark, Odense M, Denmark
Search for more papers by this authorRonnie N. Glud
Department of Biology, University of Southern Denmark, Odense M, Denmark
Tokyo University of Marine Science and Technology, Tokyo, Japan
Danish Institute for Advanced Study-DIAS, University of Southern Denmark, Odense, Denmark
Search for more papers by this authorAuthor Contribution Statement: Conceptualization: X.L., H.D., C.Z., and R.N.G. Formal analysis: X.L., X.Z., I.F.-U., and Z.L. Funding acquisition: X.L., H.D., C.Z., I.F.-U., F.W., and R.N.G. Investigation: X.L., X.Z., I.F.-U., F.W., and R.N.G. Methodology: X.L., X.Z., and H.D. Project administration: X.L., H.D., R.N.G. Resources: X.L. and R.N.G. Supervision: X.L., H.D., and R.N.G. Writing—original draft: X.L., X.Z., H.D., C.Z., I.F.-U., F.W., and R.N.G. Writing—review and editing: X.L., X.Z., H.D., I.F.-U., and Z.L., R.N.G.
Abstract
Hadal sediments are recognized as organic carbon depocenters with intensified microbial activity compared to adjacent abyssal sites due to focusing of relatively labile organic materials. However, the sources and turnover of hadopelagic organic carbon and its linkages to microbial activities have not been studied. We present the first synergic research on particulate organic carbon, dark carbon fixation, and size-fractionated microbial community respiration proxy over the Atacama Trench. The results demonstrate that all parameters attenuate rapidly from surface to mesopelagic water (~ 1000 m). Progressing deeper, values remain relatively stable throughout bathypelagic (~ 4000 m) and abyssopelagic (~ 6000 m) waters. However, in the hadopelagic zone (> 6000 m), highly variable values indicate dynamic organic carbon sources and microbial activities in the deepest trench. On average, 71% of the microbial community respiration proxy is attributable to particle-associated communities, indicating importance of particles for microbial metabolism. No apparent relationship was observed between the microbial community respiration proxy and microbial 16S rRNA gene abundance below the epipelagic depth, indicating variable supply and quality of organic carbon likely constrained heterotrophic activities rather than microbial abundances in the deep ocean. The depth-integrated dark carbon fixation (> 1000 m) accounts for 11.5% ± 7.6% of the surface net primary production, of which 2.9% ± 0.4% is from hadopelagic depth. Dark carbon fixation is thus an important in situ organic carbon source for hadal life. This study suggests that high variability in organic carbon sources and microbial activities in the hadopelagic trench cannot be simply extrapolated from findings in the shallower dark ocean (e.g., 1000–6000 m).
Conflict of Interest Statement
The authors declare no conflict of interest.
Open Research
Data availability statement
The authors declare that all data and references supporting the findings of this study are included within the paper.
Supporting Information
Filename | Description |
---|---|
lno12379-sup-0001-Supinfo.docxWord 2007 document , 516.5 KB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Amano, C., and others. 2022. Impact of hydrostatic pressure on organic carbon cycling of the deep-sea microbiome. bioRxiv: 2022.03.31.486587. doi:10.1101/2022.03.31.486587
- Arístegui, J., S. Agustí, and C. M. Duarte. 2003. Respiration in the dark ocean. Geophys. Res. Lett. 30: 1041. doi:10.1029/2002GL016227
- Arístegui, J., J. M. Gasol, C. M. Duarte, and G. J. Herndld. 2009. Microbial oceanography of the dark ocean's pelagic realm. Limnol. Oceanogr. 54: 1501–1529. doi:10.4319/lo.2009.54.5.1501
- Arnosti, C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3: 401–425. doi:10.1146/annurev-marine-120709-142731
- Baltar, F., J. Aristegui, E. Sintes, J. M. Gasol, T. Reinthaler, and G. J. Herndl. 2010. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys. Res. Lett. 37: L09602. doi:10.1029/2010gl043105
- Baltar, F., D. Lundin, J. Palovaara, I. Lekunberri, T. Reinthaler, G. J. Herndl, and J. Pinhassi. 2016. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic. Front. Microbiol. 7: 1670. doi:10.3389/fmicb.2016.01670
- Bayer, B., R. L. Hansman, M. J. Bittner, B. E. Noriega-Ortega, J. Niggemann, T. Dittmar, and G. J. Herndl. 2019. Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environ. Microbiol. 21: 4062–4075. doi:10.1111/1462-2920.14755
- Behrenfeld, M. J., and P. G. Falkowski. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42: 1–20. doi:10.4319/lo.1997.42.1.0001
- Berelson, W. M. 2001. The flux of particulate organic carbon into the ocean interior: A comparison of four U.S. JGOFS Regional Studies. Oceanography 14: 59–67. doi:10.5670/oceanog.2001.07
- Buesseler, K. O., and others. 2007. Revisiting carbon flux through the ocean's twilight zone. Science 316: 567–570. doi:10.1126/science.1137959
- Burd, A. B., and others. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$♯! is wrong with present calculations of carbon budgets? Deep-Sea Res. II Top. Stud. Oceanogr. 57: 1557–1571. doi:10.1016/j.dsr2.2010.02.022
- Celussi, M., F. Malfatti, P. Ziveri, M. Giani, and P. Del Negro. 2017. Uptake-release dynamics of the inorganic and organic carbon pool mediated by planktonic prokaryotes in the deep Mediterranean Sea. Environ. Microbiol. 19: 1163–1175. doi:10.1111/1462-2920.13641
- Chronis, G., V. Lykousis, D. Georgopoulos, V. Zervakis, S. Stavrakakis, and S. Poulos. 2000. Suspended particulate matter and nepheloid layers over the southern margin of the Cretan Sea (N.E. Mediterranean): seasonal distribution and dynamics. Prog. Oceanogr. 46: 163–185. doi:10.1016/S0079-6611(00)00017-3
- Danovaro, R., N. Della Croce, A. Dell'Anno, and A. Pusceddu. 2003. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res. I Oceanogr. Res. Pap. 50: 1411–1420. doi:10.1016/j.dsr.2003.07.001
- del Giorgio, P. A., and C. M. Duarte. 2002. Respiration in the open ocean. Nature 420: 379–384. doi:10.1038/nature01165
- Druffel, E. R. M., S. Griffin, J. E. Bauer, D. M. Wolgast, and X.-C. Wang. 1998. Distribution of particulate organic carbon and radiocarbon in the water column from the upper slope to the abyssal NE Pacific Ocean. Deep-Sea Res. II Top. Stud. Oceanogr. 45: 667–687. doi:10.1016/s0967-0645(98)00002-2
- Eduardo Menschel, A., and H. E. González. 2019. Carbon and calcium carbonate export driven by appendicularian faecal pellets in the Humboldt Current System off Chile. Sci. Rep. 9: 16501. doi:10.1038/s41598-019-52469-y
- Engel, A., and others. 2019. Inter-annual variability of organic carbon concentration in the eastern fram strait during summer (2009–2017). Front. Mar. Sci. 6: 187. doi:10.3389/fmars.2019.00187
- Fernández-Urruzola, I., O. Ulloa, R. N. Glud, M. H. Pinkerton, W. Schneider, F. Wenzhöfer, and R. Escribano. 2021. Plankton respiration in the Atacama Trench region: Implications for particulate organic carbon flux into the hadal realm. Limnol. Oceanogr. 66: 3134–3148. doi:10.1002/lno.11866
- Ferrera, C. M., G. S. Jacinto, C.-T. A. Chen, and H.-K. Lui. 2018. Organic carbon concentrations in high- and low-productivity areas of the Sulu Sea. Sustainability 10: 1867. doi:10.3390/su10061867
- Flores, E., S. I. Cantarero, P. Ruiz-Fernández, N. Dildar, M. Zabel, O. Ulloa, and J. Sepúlveda. 2022. Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench. Biogeosciences 19: 1395–1420. doi:10.5194/bg-19-1395-2022
- Follett, C. L., D. J. Repeta, D. H. Rothman, L. Xu, and C. Santinelli. 2014. Hidden cycle of dissolved organic carbon in the deep ocean. Proc. Natl. Acad. Sci. U.S.A. 111: 16706–16711. doi:10.1073/pnas.1407445111
- García-Martín, E. E., M. Aranguren-Gassis, D. M. Karl, S. Martínez-García, C. Robinson, P. Serret, and E. Teira. 2019. Validation of the in vivo Iodo-Nitro-Tetrazolium (INT) salt reduction method as a proxy for plankton respiration. Front. Mar. Sci. 6: 220. doi:10.3389/fmars.2019.00220
- Gloege, L., G. A. McKinley, C. B. Mouw, and A. B. Ciochetto. 2017. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Glob. Biogeochem. Cycl. 31: 1192–1215. doi:10.1002/2016gb005535
- Glud, R. N., and others. 2021. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2: 21. doi:10.1038/s43247-020-00087-2
- Glud, R. N., F. Wenzhofer, M. Middelboe, K. Oguri, R. Turnewitsch, D. E. Canfield, and H. Kitazato. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6: 284–288. doi:10.1038/ngeo1773
- González, H. E., and others. 2009. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Prog. Oceanogr. 83: 217–227. doi:10.1016/j.pocean.2009.07.036
- Griffith, D. R., A. P. McNichol, L. Xu, F. A. McLaughlin, R. W. Macdonald, K. A. Brown, and T. I. Eglinton. 2012. Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences 9: 1217–1224. doi:10.5194/bg-9-1217-2012
- Guerrero-Feijóo, E., E. Sintes, G. J. Herndl, and M. M. Varela. 2018. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environ. Microbiol. 20: 602–611. doi:10.1111/1462-2920.13984
- Guidi, L., L. Legendre, G. Reygondeau, J. Uitz, L. Stemmann, and S. A. Henson. 2015. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycl. 29: 1044–1059. doi:10.1002/2014GB005063
- Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki, and S. Ichimura. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar. Biol. 73: 31–36. doi:10.1007/BF00396282
- Henson, S. A., R. Sanders, and E. Madsen. 2012. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycl. 26: GB1028. doi:10.1029/2011GB004099
- Herndl, G. J., and T. Reinthaler. 2013. Microbial control of the dark end of the biological pump. Nat. Geosci. 6: 718–724. doi:10.1038/ngeo1921
- Honda, M. C. 2020. Effective vertical transport of particulate organic carbon in the western North Pacific subarctic region. Front. Earth Sci. 8: 366. doi:10.3389/feart.2020.00366
- Ishiwatari, R., K. Yamada, K. Matsumoto, H. Naraoka, S. Yamamoto, and N. Handa. 2000. Source of organic matter in sinking particles in the Japan Trench: Molecular composition and carbon isotopic analyses, p. 141–168. In N. Handa, E. Tanoue, and T. Hama [eds.], Dynamics and characterization of marine organic matter. Springer Netherlands.
- Jamieson, A. J. 2015. The hadal zone: Life in the deepest oceans. Cambridge University Press.
- Jamieson, A. J., T. Fujii, D. J. Mayor, M. Solan, and I. G. Priede. 2010. Hadal trenches: The ecology of the deepest places on Earth. Trends Ecol. Evol. 25: 190–197. doi:10.1016/j.tree.2009.09.009
- Kwak, J. H., S. H. Lee, H. J. Park, E. J. Choy, H. D. Jeong, K. R. Kim, and C. K. Kang. 2013. Monthly measured primary and new productivities in the Ulleung Basin as a biological “hot spot” in the East/Japan Sea. Biogeosciences 10: 4405–4417. doi:10.5194/bg-10-4405-2013
- Lengger, S. K., and others. 2019. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM). Glob. Biogeochem. Cycl. 33: 1715–1732. doi:10.1029/2019GB006282
- Liu, J., and others. 2019. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7: 47. doi:10.1186/s40168-019-0652-3
- Lovecchio, E., N. Gruber, M. Münnich, and Z. Lachkar. 2017. On the long-range offshore transport of organic carbon from the Canary Upwelling System to the open North Atlantic. Biogeosciences 14: 3337–3369. doi:10.5194/bg-14-3337-2017
- Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow. 1987. VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Res. A Oceanogr. Res. Pap. 34: 267–285. doi:10.1016/0198-0149(87)90086-0
- Martinez-Garcia, S., E. Fernandez, M. Aranguren-Gassis, and E. Teira. 2009. In vivo electron transport system activity: A method to estimate respiration in natural marine microbial planktonic communities. Limnol. Oceanogr. Methods 7: 459–469. doi:10.4319/lom.2009.7.459
- Martinez-Garcia, S., and others. 2018. Control of net community production by microbial community respiration at Station ALOHA. J. Mar. Syst. 184: 28–35. doi:10.1016/j.jmarsys.2018.03.007
- Middelburg, J. J. 2011. Chemoautotrophy in the ocean. Geophys. Res. Lett. 38: L24604. doi:10.1029/2011GL049725
- Minutoli, R., and L. Guglielmo. 2009. Zooplankton respiratory Electron Transport System (ETS) activity in the Mediterranean Sea: Spatial and diel variability. Mar. Ecol. Prog. Ser. 381: 199–211. doi:10.3354/meps07862
- Molari, M., E. Manini, and A. Dell'Anno. 2013. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycl. 27: 212–221. doi:10.1002/gbc.20030
- Morgan, J. P., and C. R. Ranero. 2023. Chapter 21—Roles of serpentinization in plate tectonics and the evolution of earth's mantle, p. 511–537. In J. C. Duarte [ed.], Dynamics of plate tectonics and mantle convection. Elsevier. doi:10.1016/B978-0-323-85733-8.00011-1
- Mousseau, L., S. Dauchez, L. Legendre, and L. Fortier. 1995. Photosynthetic carbon uptake by marine phytoplankton: Comparison of the stable (13C) and radioactive (14C) isotope methods. J. Plankton Res. 17: 1449–1460. doi:10.1093/plankt/17.7.1449
- Nagata, T., and others. 2010. Emerging concepts on microbial processes in the bathypelagic ocean-ecology, biogeochemistry, and genomics. Deep-Sea Res. II Top. Stud. Oceanogr. 57: 1519–1536. doi:10.1016/j.dsr2.2010.02.019
- Nunoura, T., and others. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. U.S.A. 112: E1230–E1236. doi:10.1073/pnas.1421816112
- Nunoura, T., and others. 2016. Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the hadal waters of the Japan Trench under the Eutrophic Ocean. Front. Microbiol. 7: 1261. doi:10.3389/fmicb.2016.01261
- Packard, T. T., N. Osma, I. Fernández-Urruzola, L. A. Codispoti, J. P. Christensen, and M. Gómez. 2015. Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production. Biogeosciences 12: 2641–2654. doi:10.5194/bg-12-2641-2015
- Paull, C. K., and others. 2018. Powerful turbidity currents driven by dense basal layers. Nat. Commun. 9: 4114. doi:10.1038/s41467-018-06254-6
- Ranero, C. R., J. Phipps Morgan, K. McIntosh, and C. Reichert. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425: 367–373. doi:10.1038/nature01961
- Reinthaler, T., and others. 2006. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51: 1262–1273. doi:10.4319/lo.2006.51.3.1262
- Schrope, M. 2014. Journey to the bottom of the sea. Sci. Am. 310: 60–69. doi:10.1038/scientificamerican0414-60
- Shen, J., and others. 2020. Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems. Geophys. Res. Lett. 47: e2020GL088971. doi:10.1029/2020gl088971
- Sigman, D. M., and M. P. Hain. 2012. The biological productivity of the ocean. Nat. Educ. Knowl. 3: 21.
- Sippl, C., B. Schurr, G. Asch, and J. Kummerow. 2018. Seismicity structure of the northern Chile forearc from >100,000 double-difference relocated hypocenters. J. Geophys. Res. Solid Earth 123: 4063–4087. doi:10.1002/2017jb015384
- Stief, P., M. Elvert, and R. N. Glud. 2021. Respiration by “marine snow” at high hydrostatic pressure: Insights from continuous oxygen measurements in a rotating pressure tank. Limnol. Oceanogr. 66: 2797–2809. doi:10.1002/lno.11791
- Tarn, J., L. M. Peoples, K. Hardy, J. Cameron, and D. H. Bartlett. 2016. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front. Microbiol. 7: 665. doi:10.3389/fmicb.2016.00665
- Thijs, S., and others. 2017. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8: 494. doi:10.3389/fmicb.2017.00494
- Tian, J., and others. 2018. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep-Sea Res. I Oceanogr. Res. Pap. 142: 116–126. doi:10.1016/j.dsr.2018.10.002
- Turner, J. T. 2015. Review: Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130: 205–248. doi:10.1016/j.pocean.2014.08.005
- Turnewitsch, R., and others. 2014. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep Sea Res. 90: 125–138. doi:10.1016/j.dsr.2014.05.005
- Villegas-Mendoza, J., R. Cajal-Medrano, and H. Maske. 2019. The chemical transformation of the cellular toxin INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(phenyl) tetrazolium chloride) as an indicator of prior respiratory activity in aquatic bacteria. Int. J. Mol. Sci. 20: 782. doi:10.3390/ijms20030782
- Xu, Y., and others. 2021. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosci. 126: e2020JG006189. doi:10.1029/2020JG006189
- Zhou, W., J. Liao, Y. Guo, X. Yuan, H. Huang, T. Yuan, and S. Liu. 2017. High dark carbon fixation in the tropical South China Sea. Cont. Shelf Res. 146: 82–88. doi:10.1016/j.csr.2017.08.005