Journal list menu
Dual phosphorus and nitrogen nutrient reduction will be more effective than a phosphorus-only reduction in mitigating diatom and cyanobacterial blooms in Lake Erie, USA–Canada
Corresponding Author
Hans W. Paerl
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Correspondence: [email protected]
Search for more papers by this authorJustin D. Chaffin
F. T. Stone Laboratory, The Ohio State University, Put-in-Bay, Ohio, USA
Search for more papers by this authorJack H. Cheshire
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorHaley E. Plaas
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Department of Marine, Earth and Atmospheric Sciences, NC State University, Raleigh, North Carolina, USA
Search for more papers by this authorMalcolm A. Barnard
Department of Biology and Center for Reservoir and Aquatic System Research, Baylor University, Waco, Texas, USA
Search for more papers by this authorLillian B. Goerlitz
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorJeremy S. Braddy
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorAlexandrea Sabo
Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
Search for more papers by this authorLeah M. Nelson
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorLindsay Yue
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorCorresponding Author
Hans W. Paerl
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Correspondence: [email protected]
Search for more papers by this authorJustin D. Chaffin
F. T. Stone Laboratory, The Ohio State University, Put-in-Bay, Ohio, USA
Search for more papers by this authorJack H. Cheshire
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorHaley E. Plaas
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Department of Marine, Earth and Atmospheric Sciences, NC State University, Raleigh, North Carolina, USA
Search for more papers by this authorMalcolm A. Barnard
Department of Biology and Center for Reservoir and Aquatic System Research, Baylor University, Waco, Texas, USA
Search for more papers by this authorLillian B. Goerlitz
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorJeremy S. Braddy
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorAlexandrea Sabo
Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
Search for more papers by this authorLeah M. Nelson
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorLindsay Yue
Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
Search for more papers by this authorAuthor Contribution Statement: HWP: Conceptualization, funding acquisition, investigation, methodology, resources, supervision, writing—original draft, review & editing. JDC: Conceptualization, funding acquisition, investigation, methodology, resources, writing—review & editing. JHC: Data curation, methodology, writing—review & editing. HEP: Conceptualization, investigation, writing—original, review & editing. MAB: Investigation, methodology, writing—review & editing. LBG: Investigation, methodology, writing—review & editing. JSB: Investigation, writing—review & editing. AS: Investigation, formal analysis, methodology, writing—review & editing. LMN: Investigation, formal analysis, methodology, writing—review & editing. LY: Formal analysis, methodology, writing—review & editing.
Associate Editor: John Downing
Abstract
Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom-impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom-dominated spring blooms and August cyanobacteria-dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P-alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year-round dual N and P 40% reduction is needed for long-term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie.
Conflict of Interest
None declared.
Open Research
Data availability statement
Data used in this manuscript are listed and provided in Supporting Information. Data are available upon request from the senior author.
Supporting Information
Filename | Description |
---|---|
lno12719-sup-0001-supinfo.docxWord 2007 document , 1.7 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Arar, E. J., and G. B. Collins. 1992. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater phytoplankton by fluorescence. In USEPA methods for the determination of chemical substances in marine and estuarine environmental samples, EPA/600/R-92/121, Cincinnati, OH.
- Azov, Y., and J. C. Goldman. 1982. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 43: 735–739. doi:10.1128/aem.43.4.735-739.1982
- Baer, M. M., C. M. Godwin, and T. H. Johengen. 2023. The effect of single versus dual nutrient decreases on phytoplankton growth rates, community composition, and microcystin concentration in the western basin of Lake Erie. Harmful Algae 23: 2382. doi:10.1016/j.hal.2023.102382
10.1016/j.hal.2023.102382 Google Scholar
- Barnard, M. A., and others. 2021. Roles of nutrient limitation on western Lake Erie CyanoHAB toxin production. Toxins 13: 47. doi:10.3390/toxins13010047
- Bates, S. S., J. Worms, and J. C. Smith. 1993. Effects of ammonium and nitrate on growth and domoic acid production by Nitzschia pungens in batch culture. Can. J. Fish. Aquat. Sci. 50: 1248–1254. doi:10.1139/f93-141
- Blomquist, P., A. Pettersson, and P. Hysenstrand. 1994. Ammonium nitrogen: A key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164. doi:10.1127/archiv-hydrobiol/132/1994/141
10.1127/archiv-hydrobiol/132/1994/141 Google Scholar
- Carrick, H. J., C. L. Schelske, F. J. Aldridge, and M. F. Coveney. 1993. Assessment of phytoplankton nutrient limitation in productive waters: Application of dilution bioassays. Can. J. Fish. Aquat. Sci. 50: 2208–2221. doi:10.1139/F93-247
- Chaffin, J. D., T. B. Bridgeman, and D. L. Bade. 2013. Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie. Adv. Microbiol. 3: 16–26. doi:10.4236/aim.2013.36A003
- Chaffin, J. D., D. D. Kane, K. Stanislawczyk, and E. M. Parker. 2018a. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): Implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Environ. Sci. Pollut. Res. 25: 25175–25189. doi:10.1007/s11356-018-2612-z
- Chaffin, J. D., T. W. Davis, D. J. Smith, M. M. Baer, and G. J. Dick. 2018b. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae 73: 84–97. doi:10.1016/j.hal.2018.02.001
- Chaffin, J. D., and others. 2019. Cyanobacterial blooms in the central basin of Lake Erie: Potentials for cyanotoxins and environmental drivers. J. Great Lakes Res. 45: 277–289. doi:10.1016/j.jglr.2018.12.006
- Chaffin, J. D., and others. 2022. Quantification of microcystin production and biodegradation rates in the western basin of Lake Erie. Limnol. Oceanogr. 67: 1470–1483. doi:10.1002/lno.12096
- Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323: 1014–1015. doi:10.1126/science.1167755
- Davis, C. C. 1964. Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol. Oceanogr. 9: 275–283. doi:10.4319/lo.1964.9.3.0275
- Del Giudice, D., S. Fang, D. Scavia, T. W. Davis, M. A. Evans, and D. R. Obenour. 2021. Elucidating controls on cyanobacteria bloom timing and intensity via Bayesian mechanistic modeling. Sci. Total Environ. 755: 142487. doi:10.1016/j.scitotenv.2020.142487
- DePinto, J. V., T. C. Young, and L. M. McIlroy. 1986. Great Lakes water quality improvement. Environ. Sci. Technol. 20: 752–759. doi:10.1021/es00150a001
- Elser, J. J. M. E. S., and others. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10: 1124–1134. doi:10.1111/j.1461-0248.2007.01113.x
- Gibbons, K. J., and T. B. Bridgeman. 2020. Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments. Water Res. 182: 116022. doi:10.1016/j.watres.2020.116022
- Glibert, P. M., and others. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61: 165–197. doi:10.1002/lno.10203
- Gobler, C. J., J. A. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow, and D. B. Van de Waal. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97. doi:10.1016/j.hal.2016.01.010
- Graeber, D., M. J. McCarthy, T. Shatwell, D. Borchard, E. Jeppesen, M. Søndergaard, T. L. Lauridsen, and T. A. Davidson. 2024. Consistent stoichiometric long-term relationships between nutrients and chlorophyll-a across shallow lakes. Nat. Commun. 15: 809. doi:10.1038/s41467-024-45115-3
- Great Lakes Water Quality Agreement (GLWQA). 2015. Recommended phosphorus loading targets for Lake Erie—Annex 4 Objectives and Targets Task Team Final Report to the Nutrients Annex Subcommittee. Recommended Phosphorus Loading Targets for Lake Erie—May 2015 (epa.gov).
- Gu, B., and others. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613: 77–84. doi:10.1038/s41586-022-05481-8
- Hellweger, F. L., R. M. Martin, F. Eigemann, D. J. Smith, G. J. Dick, and S. W. Wilhelm. 2022a. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science 376: 1001–1005. doi:10.1126/science.abm6791
- Hellweger, F. L., and others. 2022b. Response to comment on “Models predict planned phosphorus load reduction will make Lake Erie more toxic”. Science 378: 2277. doi:10.1126/science.ade2277
- Hoffman, D. K., M. J. McCarthy, A. R. Boedecker, J. A. Myers, and S. E. Newell. 2022. The role of internal nitrogen loading in supporting non-N-fixing harmful cyanobacterial blooms in the water column of a large eutrophic lake. Limnol. Oceanogr. 67: 2028–2041. doi:10.1002/lno.12185
- Holmroos, H., S. Hietanen, J. Niemistö, and J. Horppila. 2012. Sediment resuspension and denitrification affect the nitrogen to phosphorus ratio of shallow lake waters. Fundam. Appl. Limnol. 180: 93–205. doi:10.1127/1863-9135/2012/0223
- Howarth, R. W., R. Marino, and J. J. Cole. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical control. Limnol. Oceanogr. 33: 688–701. doi:10.4319/lo.1988.33.4part2.0688
- Huisman, J., E. Dittman, J. Fastner, J. M. Schuurmans, J. T. Scott, D. B. Van de Wall, P. Visser, M. Welker, and I. Chorus. 2022. Comment on “Models predict planned phosphorus load reduction will make Lake Erie more toxic”. Science 378: 9959. doi:10.1126/science.add9959
- Janse, J. H., and others. 2024. Ecosystems: Impacts of anthropogenic nitrogen inputs on terrestrial and aquatic ecosystems [Chapter 14]. In M. A. Sutton and others [eds.], The international nitrogen assessment. Cambridge Univ. Press.
- King, K. W., M. R. Williams, L. T. Johnson, D. R. Smith, G. A. LaBarge, and N. R. Fausey. 2017. Phosphorus availability in western Lake Erie Basin drainage waters: Legacy evidence across spatial scales. J. Environ. Qual. 46: 466–469. doi:10.2134/jeq2016.11.0434
- Kronvang, B., E. Jeppesen, D. J. Conley, M. Søndergaard, S. E. Larsen, N. B. Ovesen, and J. Carstensen. 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 304: 274–288. doi:10.1016/j.jhydrol.2004.07.035
- Lewis, W. M., and W. A. Wurtsbaugh. 2008. Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. Int. Rev. Hydrobiol. 93: 446–465. doi:10.1002/iroh.200811065
- Liu, X., Y. Li, R. Shen, M. Zhang, and F. Chen. 2022. Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China—do the ammonium concentration and nitrate to ammonium ratio play a role? Water Res. 218: 118493. doi:10.1016/j.watres.2022.118493
- Makarewicz, J. C. 1993. Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. J. Great Lakes Res. 19: 258–274. doi:10.1016/S0380-1330(93)71216-2
- Matisoff, G., and J. J. H. Ciborowski. 2005. Lake Erie trophic status collaborative study. J. Great Lakes Res. 31: 1–10. doi:10.1016/S0380-1330(05)70300-2
- McCullough, I., X. Sun, P. Hanly, and P. A. Soranno. 2024. Knowing your limits: Patterns and drivers of nutrient limitation and nutrient–chlorophyll relationships in US lakes. Limnol. Oceanogr. Letters. doi:10.1002/lol2.10420
- Nauman, C., K. Stanislawczyk, L. A. Reitz, and J. D. Chaffin. 2024. The spatiotemporal distribution of potential saxitoxin-producing cyanobacteria in western Lake Erie. J. Great Lakes Res. 50: 102342. doi:10.1016/j.jglr.2024.102342
- Newell, S. E., T. W. Davis, T. H. Johengen, D. Gossiaux, A. Burtner, D. Palladino, and M. J. McCarthy. 2019. Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie. Harmful Algae 81: 86–93. doi:10.1016/j.hal.2018.11.003
- Paerl, H. W., and N. D. Bowles. 1987. Dilution bioassays: Their application to assessments of nutrient limitation in hypereutrophic waters. Hydrobiologia 146: 265–273. doi:10.1007/BF00016348
- Paerl, H. W., L. M. Valdes, J. L. Pinckney, M. F. Piehler, J. Dyble, and P. H. Moisander. 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Bioscience 53: 953–964 doi:10.1641/0006-3568(2003)053[0953:PPAIOE]2.0.CO;2
- Paerl, H. W., H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li, and W. S. Gardner. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 45: 1973–1983. doi:10.1016/j.watres.2010.09.018
- Paerl, H. W., and others. 2016. It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ. Sci. Technol. 50: 10805–10813. doi:10.1021/acs.est.6b02575
- Pinckney, J. L., T. L. Richardson, D. F. Millie, and H. W. Paerl. 2001. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Org. Geochem. 32: 585–595. doi:10.1016/S0146-6380(00)00196-0
- Reavie, E. D., and others. 2016. Winter–spring diatom production in Lake Erie is an important driver of summer hypoxia. J. Great Lakes Res. 42: 608–618. doi:10.1016/j.jglr.2016.02.013
- Reynoldson, T. B., and A. L. Hamilton. 1993. Historic changes in populations of burrowing mayflies (Hexagenia limbata) from Lake Erie based on sediment tusk profiles. J. Great Lakes Res. 19: 250–257. doi:10.1016/S0380-1330(93)71215-0
- Rock, L. A., and S. M. Collins. 2024. A broad-scale look at nutrient limitation and a shift toward Co-limitation in United States Lakes. Environ. Sci. Technol. 58: 11482–11491. doi:10.1021/acs.est.4c03135
- Rowland, F. E., and others. 2020. Recent patterns in Lake Erie phosphorus and chlorophyll a concentrations in response to changing loads. Environ. Sci. Technol. 54: 835–841. doi:10.1021/acs.est.9b05326
- Scavia, D., J. V. DePinto, and I. Bertani. 2016. A multi-model approach to evaluating target phosphorus loads for Lake Erie. J. Great Lakes Res. 42: 1139–1150. doi:10.1016/j.jglr.2016.09.007
- Schelske, C. L. 1984. In situ and natural phytoplankton assemblage bioassays, p. 15–47. In L. E. Shubert [ed.], Algae as ecological indicators. Academic Press.
- Schindler, D. W. 2012. The dilemma of controlling cultural eutrophication of lakes. Proc. Royal Soc. B: Biol. Sci. 279: 4322–4333. doi:10.1098/rspb.2012.1032
- Schindler, D. W., and others. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37 year whole ecosystem experiment. Proc. Natl. Acad. Sci. U. S. A. 105: 11254–11258. doi:10.1073/pnas.0805108105
- Schindler, D. W., S. R. Carpenter, S. C. Chapra, R. E. Hecky, and D. M. Orihel. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50: 8923–8929. doi:10.1021/acs.est.6b02204
- Scott, J. T., and M. J. McCarthy. 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol. Oceanogr. 55: 1265–1270. doi:10.4319/lo.2010.55.3.1265
- Scott, J. T., M. J. McCarthy, and H. W. Paerl. 2019. Nitrogen transformations differentially affect nutrient-limited primary production in lakes of varying trophic state. Limnol. Oceanogr. Letters 4: 96–104. doi:10.1002/lol2.10109
- Shatwell, T., and J. Köhler. 2019. Decreased nitrogen loading controls summer cyanobacterial blooms without promoting nitrogen-fixing taxa: Long-term response of a shallow lake. Limnol. Oceanogr. 64: S166–S178. doi:10.1002/lno.11002
- Søndergaard, M., T. L. Lauridsen, L. S. Johansson, and E. Jeppesen. 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795: 35–48. doi:10.1007/s10750-017-3110-x
- Steffen, M. M., B. S. Belisle, S. B. Watson, G. L. Boyer, and S. W. Wilhelm. 2014. Review: Status, causes and controls of cyanobacterial blooms in Lake Erie. J. Great Lakes Res. 40: 215–225. doi:10.1016/j.jglr.2013.12.012
- Stow, C. A., R. P. Stumpf, M. D. Rowe, L. T. Johnson, H. J. Carrick, and R. Yerubandi. 2022. Model assumptions limit implications for nitrogen and phosphorus management. J. Great Lakes Res. 48: 1735–1737. doi:10.1016/j.jglr.2022.09.003
- Stumpf, R. P., T. T. Wynne, D. B. Baker, and G. L. Fahnenstiel. 2012. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One 7: e42444. doi:10.1371/journal.pone.0042444
- Stumpf, R. P., L. T. Johnson, T. T. Wynne, and D. B. Baker. 2016. Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J. Great Lakes Res. 42: 1174–1183. doi:10.1016/j.jglr.2016.08.006
- Swarbrick, V. J., G. L. Simpson, P. M. Glibert, and P. R. Leavitt. 2019. Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years. Limnol. Oceanogr. 64: S130–S149. doi:10.1002/lno.11093
- Tammeorg, O., and others. 2023. Sustainable lake restoration: From challenges to solutions. WIREs Water 11: e1689. doi:10.1002/wat2.1689
- US Environmental Protection Agency. 2015a. Online [accessed xxxx]. Available from. https://www.epa.gov/sites/default/files/2015-06/documents/report-recommended-phosphorus-loading-targets-lake-erie-201505.pdf
- US Environmental Protection Agency. 2015b. Preventing eutrophication: Scientific support for dual nutrient criteria. Fact sheet technical document EPA—820-S-15-001. Washington, DC. Available from https://www.epa.gov/sites/default/files/documents/nandpfactsheet.pdf
- Verhamme, E. M., T. M. Redder, D. A. Schlea, J. Grush, J. Bratton, and J. Z. DePinto. 2016. Development of the western Lake Erie ecosystem model (WLEEM): Application to connect phosphorus loads to cyanobacteria biomass. J. Great Lakes Res. 42: 1193–1205. doi:10.1016/J.JGLR.2016.09.006
- Wilhelm, S. W., F. L. Hellweger, R. M. Martin, C. Schampera, F. Eigemann, D. J. Smith, and G. J. Dick. 2022. Response to “Model assumptions limit implications for nitrogen and phosphorus management”: The need to move beyond the phosphorus = biomass = toxin doctrine. J. Great Lakes Res. 48: 1738–1739. doi:10.1016/j.jglr.2022.10.001
- Wurtsbaugh, W. A., H. W. Paerl, and W. K. Dodds. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6: e1373. doi:10.1002/wat2.1373
- Xu, H., and others. 2021. Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: Implications for nutrient management. Limnol. Oceanogr. 66: 1492–1509. doi:10.1002/lno.11700
- Yoshiyama, K., and J. H. Sharp. 2006. Phytoplankton response to nutrient enrichment in an urbanized estuary: Apparent inhibition of primary production by over eutrophication. Limnol. Oceanogr. 51: 424–434. doi:10.4319/lo.2006.51.1_part_2.0424
- Zepernick, B. N., R. M. Martin, G. S. Bullerjahn, R. M. L. McKay, H. W. Paerl, and S. W. Wilhelm. 2024. A tale of two blooms: Do ecological paradigms for Lake Erie algal bloom success and succession require revisiting? J. Great Lakes Res. 50: 102336. doi:10.1016/j.jglr.2024.102336
- Zhou, Y., D. R. Obenour, D. Scavia, T. H. Johengen, and A. M. Michalak. 2013. Spatial and temporal trends in Lake Erie hypoxia, 1987–2007. Environ. Sci. Technol. 47: 899–905. doi:10.1021/es303401b
- Zhou, Y., A. M. Michalak, D. Beletsky, Y. R. Rao, and R. P. Richards. 2014. Record-breaking Lake Erie hypoxia during 2012 drought. Environ. Sci. Technol. 49: 800–807. doi:10.1021/es503981n
10.1021/es503981n Google Scholar